
Getting Started
with ChIDE and Ch Command Shell

Ch Version 6.1

Copyright c©2008 by SoftIntegration, Inc., All rights reserved

How to Contact SoftIntegration

Mail SoftIntegration, Inc.
216 F Street, #68
Davis, CA 95616

Phone + 1 530 297 7398
Fax + 1 530 297 7392
Web http://www.softintegration.com
Email info@softintegration.com

Copyright c©2001-2008 by SoftIntegration, Inc. All rights reserved.
Revision 6.1.0, September 2008

Permission is granted for registered users to make one copy for their own personal use. Further reproduction,
or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited.

SoftIntegration, Inc. is the holder of the copyright to the Ch language environment described in this docu-
ment, including without limitation such aspects of the system as its code, structure, sequence, organization,
programming language, header files, function and command files, object modules, static and dynamic loaded
libraries of object modules, compilation of command and library names, interface with other languages and
object modules of static and dynamic libraries. Use of the system unless pursuant to the terms of a license
granted by SoftIntegration or as otherwise authorized by law is an infringement of the copyright.

SoftIntegration, Inc. makes no representations, expressed or implied, with respect to this documenta-
tion, or the software it describes, including without limitations, any implied warranty merchantability
or fitness for a particular purpose, all of which are expressly disclaimed. Users should be aware that
included in the terms and conditions under which SoftIntegration is willing to license the Ch lan-
guage environment as a provision that SoftIntegration, andtheir distribution licensees, distributors
and dealers shall in no event be liable for any indirect, incidental or consequential damages in con-
nection with, or arising out of, the furnishing, performance, or use of the Ch language environment,
and that liability for direct damages shall be limited to the amount of purchase price paid for the Ch
language environment.

In addition to the foregoing, users should recognize that all complex software systems and their doc-
umentation contain errors and omissions. SoftIntegrationshall not be responsible under any circum-
stances for providing information on or corrections to errors and omissions discovered at any time in
this documentation or the software it describes, even if SoftIntegration has been advised of the errors
or omissions. The Ch language environment is not designed orlicensed for use in the on-line control
of aircraft, air traffic, or navigation or aircraft communic ations; or for use in the design, construction,
operation or maintenance of any nuclear facility.

Ch, ChIDE, SoftIntegration, and One Language for All are either registered trademarks or trademarks of
SoftIntegration, Inc. in the United States and/or other countries. Microsoft, MS-DOS, Windows, Windows
95, Windows 98, Windows Me, Windows NT, Windows 2000, and Windows XP are trademarks of Microsoft
Corporation. Solaris and Sun are trademarks of Sun Microsystems, Inc. Unix is a trademark of the Open
Group. HP-UX is either a registered trademark or a trademarkof Hewlett-Packard Co. Linux is a trademark
of Linus Torvalds. Mac OS X and Darwin are trademarks of AppleComputers, Inc. QNX is a trademark of
QNX Software Systems. All other trademarks belong to their respective holders.

i

Table of Contents

1 Introduction 1

2 Getting Started with ChIDE 1

3 Debugging C/Ch/C++ Programs 5

4 Using Debug Commands Inside the Debug Command Pane 13

5 Getting Started with Ch Command Shell 17
5.1 Portable Commands for Handling Files. 18
5.2 Interactive Execution of Programs 20
5.3 Setup Paths and Finding Commands in Ch 20
5.4 Interactive Execution of Expressions and Statements 22
5.5 Interactive Execution of Functions 24
5.6 Interactive Execution of C++ Programming Features 26

6 Interactive Execution of Binary Commands in the Output Pane 26

7 Compiling and Linking C/C++ Programs 27

8 Commonly Used Keyboard Commands in ChIDE 27

ii

2 GETTING STARTED WITH CHIDE

1 Introduction

Ch is an embeddable C/C++ interpreter. It is a superset of C with classes in C++ and other high-level ex-
tensions. Possible uses for Ch include but are not limited tocross-platform scripting, shell programming,
2D/3D plotting, numerical computing, and embedded scripting. Because Ch is interpretive, it allows C/C++
programs to be executed without compiling and linking. It ismore suitable for interactive classroom pre-
sentations in teaching and for students learning C and C++. With advanced numerical features, it can be
conveniently used for applications in engineering and science. This document presents a quick introduction
on how to use this C/C++ interpreter using ChIDE and Ch command shell.

2 Getting Started with ChIDE

An Integrated Development Environment (IDE) can be used to develop C and C++ programs. It can typically
be used to edit programs with added features of automatic syntax highlighting and run the programs within
the IDE. ChIDE is an Integrated Development Environment (IDE) to edit, debug, and run C/Ch/C++ pro-
grams in Ch interpretively without compilation. ChIDE can also compile and link edited C/C++ programs
using C and C++ compilers of your choice such as Microsoft Visual Studio .NET. ChIDE is developed using
Embedded Ch.

ChIDE is available in Windows for Ch Professional, Student,and Evaluation Editions.
ChIDE can be launched by running the programchide. In Windows, ChIDE can also be conveniently

launched by double clicking its icon shown in Figure 1 on the desktop.
Text editing in ChIDE works similarly to most Macintosh or Windows editors such as Notepad with the

additional feature of automatic syntax styling. The user interface can be in one of 30 local languages such
as German, French, Chinese, and Korean. ChIDE can hold multiple files in memory at one time but only
one file will be visible. By default, ChIDE allows up to 20 filesto be in memory at once.

As an example, open a new document, and type

#include <stdio.h>

int main() {
printf("Hello, world!\n");
return 0;

}

in the text as shown in Figure 2 in the editing pane. The program appears colored due to syntax highlighting.
For the classroom presentation, the font size of the displayed program can be enlarged by clicking the

commandView | Change Font Size, and then make changes.
Save the document as a file namedhello.c as shown in Figure 3. The programhello.c, located in

CHHOME/demos/bin/hello.c can also be loaded usingFile | Open command. HereCHHOME is
the home directory for Ch. By default, the home directory forCh in Windows isC:/Ch in theC drive.

Perform theRun or Tools | Run command as shown in Figure 4 to execute the programhello.c.
Instead of performing theRun orTools | Run command, pressing function keyF2will also execute the
program.

Figure 1. A ChIDE icon on a desktop in Windows.

.

1

2 GETTING STARTED WITH CHIDE

Figure 2. The program edited inside the editing pane in ChIDE.

Figure 3. Save the edited program in ChIDE.

Figure 4. Run the program inside the editing pane in ChIDE andits output.

2

2 GETTING STARTED WITH CHIDE

There are four panes in ChIDE: the editing pane, debug pane, debug command pane, and output pane.
The debug pane is located either to the below of the editing pane or on the right. Initially it is of zero size,
but it can be made larger by dragging the divider between it and the editing pane. The debug command pane
is located either to the below of the debug pane or on the right. Similarly, the output pane is located either
to the below of the debug pane or on the right. The output pane is on the left of the debug command pane.
Initially the output pane is of zero size, but it can also be made larger by dragging the divider between it and
the debug pane. By default, the output from the program is directed into the output pane.

TheOptions | Vertical Split command can be used to move the debug pane to the right of
the editing pane, followed by the output pane and debug command pane.

The same program hello.c in CHHOME/demos/bin/hello.c, where CHHOME is the home directory for
Ch such as C:/ Ch in Windows forC:/Ch/demos/bin/hello.c, can also be loaded using
File | Open command.

When the programhello.c is executed, the output pane will be made visible if it is not already visible
and will display

ch -u hello.c
Hello, world
Exit code: 0

as shown in Figure 4. The first blue line

ch -u hello.c

from ChIDE shows that it uses Ch to execute the programhello.c. The black line is the output from
running the Ch program. The last blue line is from ChIDE showing that the program has finished. This
line displays the exit code for the program. An exit code of 0 indicates that the program is terminated
successfully by the statement

return 0;

or

exit (0);

in the program. If a failure had occurred during the execution of the program or the program is terminated
with a non-zero value for a return or exit statement such as

return -10;

or

exit(-2);

the exit code would be -1.
ChIDE understands the error messages produced by Ch. To see this, add a mistake to the program by

changing the line

printf("Hello, world\n");

to

printf("Hello, world\n";

Perform theRun or Tools | Run command for the modified program. The results should look similar
to those below

3

2 GETTING STARTED WITH CHIDE

Figure 5. The error line in output from executing program hello.c.

ERROR: missing ’)’
ERROR: syntax error before or at line 7 in file C:\ch\demos\bin\hello.c
==>: printf("Hello, world\n";
BUG: printf("Hello, world\n"; <== ???

ERROR: cannot execute command ’C:\ch\demos\bin\hello.c’

as shown in Figure 5. Because the program fails to execute, the exit code -1 is displayed at the end of
the output pane as

Exit code: -1

If you double click the red colored error message in the output pane shown in Figure 5 with the left button
of your mouse, the line with incorrect syntax and the error message in the output pane will be highlighted
with a yellow background as shown in Figure 6. The caret is moved to this line and the pane is automatically
scrolled if needed to show the line. While it is easy to see where the problem is in this simple case, with a
large file, theTools | Next Message command can be used to view each of the reported errors. Upon
performingTools | Next Message, the first error message in the output pane and the appropriate line
in the editing pane are highlighted with a yellow background.

The output pane can be opened and closed by the commandView | Output Pane. The contents
of the console window can be cleared by the commandView | Clear Output Pane as shown in
Figure 7.

If command execution has failed and is taking too long to complete, then the
Stop or Tools | Stop Executing command, or function keyF4, can be used to stop the program.

You may use commandParse or Tools | Parse to just check the syntax error of the program
without executing it.

ChIDE can also execute programs that require the user’s input through such C functions asscanf().
It can also handle command parameters. More information about running C and C++ programs in Ch using
ChIDE can be obtained on-line by clicking ChIDE Help from theHelp menu as shown in Figure 8.

4

3 DEBUGGING C/CH/C++ PROGRAMS

Figure 6. Finding the error line in output from executing program hello.c.

3 Debugging C/Ch/C++ Programs

The ChIDE has all capabilities available in a typical debugger for binary C programs. The debug interface
commands, such asStart andClear, are shown in Figure 9.

They are also available directly on the debug bar as shown in Figure 10. The applicable commands in
the debug bar at any point of debugging will be clickable. Non-clickable commands are dimmed.

The user can execute the program in the editing pane in the debug mode by theStart command
or function key F5. The program will stop when a breakpoint ishit. The user can execute the program
line by line either by commandStep or Next. The commandStep or function key F6 will step into a
function whereas the commandNext or function key F7 will step over the function to the next line. During
debugging, the commandContinue can be invoked to continue the execution of the program till it hits a
breakpoint or the program ends.

Before program execution or during the debugging of an executed program, new breakpoints can be
added to stop the program execution when they are hit. A breakpoint for a line can be added by clicking
the left margin of the line as shown in Figure 10. To clear the breakpoint, click the highlighted red mark
on the left margin of the line. Breakpoints in the debugger can be examined by clicking Breakpoints on
the debug pane selection bar above the debug pane as shown in Figure 10. The debug pane will display the
breakpoint number and its location for each breakpoint. A breakpoint for the current line can also be added
by clicking the menu Break. It can also be deleted by clickingthe menu Clear. A breakpoint cannot be set
in a declaration statement; however, a breakpoint can be setfor a declaration statement with initialization
such as

int i = 10;

5

3 DEBUGGING C/CH/C++ PROGRAMS

Figure 7. Clearing the contents in the output pane.

Figure 8. Get on-line help on how to use ChIDE.

6

3 DEBUGGING C/CH/C++ PROGRAMS

Figure 9. Debug menus.

The program shall not be edited when it is being executed and debugged. Otherwise, a warning message

Warning: Any changes made to the file during debugging will not
be reflected in the current debugging session

will be displayed. However, when a program is finished its execution, it can be edited. When a program is
edited by deleting or adding new code, the breakpoints set for the program will be updated automatically.

Using debug commands inside the debug command pane, a breakpoint can also be set for functions and
controlling variables, which will be described later.

If the program execution has failed and is taking too long to complete, then the commandAbort can
be used to stop the program.

When a program is executed in the debug mode, the standard input, output, and error streams are
redirected in a separate Debug Console Window shown in Figure 11. By default, the console window
always stays on the top of other windows. This default behavior can be turned off or on by the com-
mandView | Debug Console Window Always on Top. The console window can be opened
and closed by the commandView | Debug Console Window. The contents of the console win-
dow can be cleared by the commandDebug | Clear Debug Console Window as shown in Fig-
ure 7. The colors for background and text as well as the windows size and font size of the console window
can be changed by right clicking the ChIDE icon on the upper left corner of the window and selecting
Properties menu to make changes. Note that for Windows Vista, you need torun ChIDE with the
administrative privilege to make such a change.

When a program is executed line by line by commandsStep or Next, names and their corresponding
values of variables in the current stack can be examined in the debug pane by clicking menuLocals on the
debug pane selection bar. When control of the program execution is inside a function, commandLocals
displays the values of local variables and arguments of the function. When control of the program execution
is not in a function of a script, commandLocals displays the values of global variables of the program. As
shown in Figure 12, when programfunc.c, available in the directory CHHOME/demos/bin, is executed
at line 9, highlighted by the color green, local integer variablesi andn are 1 and 10, whereas the arraya of
double type contains 1, 2, 3, 4, and 5.

The user can change the function stack during debugging. It can goUp to its calling function or move
Down to the called function so that the variables within its scopecan be displayed in the debug pane or
accessed in the debug command pane. For example, when clicking commandUp in Figure 12, the control
flow of the program moves to its calling function main() at line 15 as highlighted with the color green also
in Figure 13. The menu Down as shown in Figure 12 is not clickable. But, the menu Down is clickable in

7

3 DEBUGGING C/CH/C++ PROGRAMS

Figure 10. Set a breakpoint.

Figure 11. Debug Console Window for Input/Output in Debugging.

Figure 13 when the current stack is moved up. The debug pane atthis point displays the name and value of
the variablei, the only regular variable, in the calling function main().

CommandStack above the debug command displays function, member function, or program name
and corresponding stack level in each stack. The current running function has stack level 0, whereas level
n+1 is the function that has called a function with stack level n.

For example, as shown in Figure 14, function func() is calledby function main(), which in turn is invoked
by program func.c located in the directory
C:\Ch\demos\bin\func.c.

Names and their corresponding values of variables in all stacks can be displayed by the command
Variables on the debug pane selection bar as shown in Figure 15. In this case, the program is stopped
at line 9. Names and values of local variables inside functions func() andmain() as well as global
variables are displayed in the debug pane. As one can see, before line 9 is executed, the value of the global
variableg is 200.

When the command

Display special variables in debug pane for Locals and Variables

8

3 DEBUGGING C/CH/C++ PROGRAMS

Figure 12. Display names and values of local variables in thecurrently called function.

in the debug menu shown in Figure 9 is clicked, names and values of special variables such as__func__
will be displayed in the debug pane for commandsLocals andVariables.

9

3 DEBUGGING C/CH/C++ PROGRAMS

Figure 13. Display names and values of local variables in thecalling function.

10

3 DEBUGGING C/CH/C++ PROGRAMS

Figure 14. Display different stacks for the executing point.

11

3 DEBUGGING C/CH/C++ PROGRAMS

Figure 15. Display names and values of all variables in all stacks .

12

4 USING DEBUG COMMANDS INSIDE THE DEBUG COMMAND PANE

Figure 16. Debug commands in the debug command pane.

4 Using Debug Commands Inside the Debug Command Pane

Many debug commands inside the debug command pane are available during the debugging of a program.
A prompt

debug>

inside the debug command pane indicates that the debugger isready to accept debug commands. Type
the commandhelp, it will display all available commands as shown in Figure 16. The menu on the left
before a colon shows a command and the description on the right explains the action taken for the command.
All commands in the debug bar are available in this interactive debug command window. However, some
features are available only through the debug command pane.

The variables, expressions, and functions can be manipulated by commandsassign, call, and
print. The commandassign assigns a value to a variable,call invokes a function, andprint prints
out the value of a variable or expression including functions. It is invalid to print an expression of void type
including a function with return type void. One can also justtype an expression, the value of the expression
will be displayed. If the expression is a function with the returning type of void, only the function is called.
For example, commands

debug> assign i=2*10

13

4 USING DEBUG COMMANDS INSIDE THE DEBUG COMMAND PANE

Figure 17. Using debug commands in the debug command pane.

debug> call func()
debug> print i
20
debug> 2*i
40
debug>

assign the variablei with the value of 10, call functionfunc(), and print out the value of the expression
2*i when the variablei is valid in its current scope. As another example, when program func.c is
executed and stopped at line 9 shown in Figure 17, the values of variablesa andi as well as expression
2*g can be obtained by typing corresponding commands in the debug command pane.

Commandstart begins debugging a program. The optional arguments for the commandstart
andrun are processed and passed to the arguments for function main(). For example, to run program
C:\Ch\demos\bin\commandarg.c shown in Figure 18, the debug command

debug> start -o option1 -v option2 option3 option4

will assign the strings"C:\Ch\demos\bin\commandarg.c", "-0", "option1", "-v",
"option2", "option3", and"option4" to elementsargv[0], argv[1], argv[2], argv[3],
argv[4], argv[5], andargv[6] of the argumentargv of the main function

14

4 USING DEBUG COMMANDS INSIDE THE DEBUG COMMAND PANE

Figure 18. A program for handling command parameters.

int main(int argc, char *argv[])

of the Ch scriptcommandarg.c, respectively. An optional argument with space should be enclosed within
two double quotation marks as shown below.

debug> start opt1 "opt2 with space" opt3

The program will stop when a breakpoint is hit. The commandrun will execute the program without
debugging by ignoring breakpoints. Similar to commands on the debug bar, the user can execute the program
line by line either by commandstep or next. The commandstep will step into a function whereas or
the commandnext will step over the function to the next line. During the debugging, the commandcont
can be invoked to continue the execution of the program till it hits a breakpoint or the program ends. The
user can change the function stack during debugging. It can go up to its calling function or move down to
the called function by the commandsup anddown, respectively, so that the variables within its scope can
be accessed in the debug command pane. The function or program names in all stacks are displayed by
the commandstack. Names and their corresponding values of variables in the current stack are displayed
by the commandlocals. Commandvariables displays names and values for all variables within its
scope in each stack.

The commandwatch adds an expression, including a single variable, into a listof watched expressions.
Watched expressions can be added before or during executionof a program. An expression can be removed
from the list of the watched expressions by theremove expr command. The commandremove removes
all expressions in the watched list. For example, commands in the debug command pane

debug> watch 2*g
debug> i

add expression2*g and variable i to a list of watched expressions as shown in Figure 19. When the
program is stopped at a breakpoint or stepped into next statement, the values of these watched expressions
can be viewed in the debug pane by clicking the commandWatch on the debug pane selection bar as shown
in Figure 19.

Before the program execution or during the debugging of an executed program, new breakpoints can be
added to stop the program execution. A breakpoint can be setup based on three specifications: file name and
line number, function, and controlling variable. When a breakpoint is setup in a function, the program will
stop at its first executable line of the function. When a breakpoint is setup for a variable, the program will
stop when the value of the variable changes. Each breakpointcan have an optional conditional expression.

15

4 USING DEBUG COMMANDS INSIDE THE DEBUG COMMAND PANE

Figure 19. Set watch expressions and variables inside the debug command pane to display their values in
the debug pane.

When a breakpoint location is reached, the conditional expression is evaluated if it exists. The breakpoint
is hit only if the expression is either true or has changed which needs to be specified when the breakpoint
was added. By default, the breakpoint is hit only if the expression is true. Commandstopat sets a
new breakpoint specified by a file name and line number in the subsequent arguments. The program breaks
execution when it reaches this location. Commandstopin sets a new breakpoint for a function. The
program breaks execution when it reaches the first executable line of the function. Commandstopvar
sets a new breakpoint for a controlling variable. The variable is evaluated while the program is running. The
program breaks execution when the value of the variable changes. When each of these command is invoked,
a breakpoint is appended to the list of breakpoints. The optional conditional expression and triggering
method for each breakpoint are passed as the last two arguments of these commands. For example, the
syntaxes for setting a breakpoint in a file with a complete path and line number are as follows.

debug> stopat filename #
debug> stopat filename # condexpr
debug> stopat filename # condexpr condtrue

When a breakpoint location is reached, the optional expression condexpr is evaluated. If the argument
condtrue is true or missing, the breakpoint will be hit if the value forthe expression is true; otherwise,
the breakpoint will be hit if the value for the expression haschanged. For example, the command

debug> stopat C:/Ch/demos/bin/func.c 6

16

5 GETTING STARTED WITH CH COMMAND SHELL

Figure 20. A Ch icon on a desktop in Windows.

sets a breakpoint in filefunc.c located at the directory C:/Ch/demos/bin at line 6. The command

debug> stopat C:/Ch/demos/bin/func.c 6 i+j 1

sets a breakpoint in filefunc.c at line 6. When the breakpoint location in file func.c at line 6is reached,
the expressioni+j is evaluated and the breakpoint will be hit if the value for the expressioni+j is true.
The above command is the same as

debug> stopat C:/Ch/demos/bin/func.c 6 i+j

The command

debug> stopat C:/Ch/demos/bin/func.c 6 i+j 0

sets a breakpoint in filefunc.c at line 6. When the breakpoint location in file func.ch at line6 is reached,
the expressioni+j is evaluated and the breakpoint will be hit if the value for the expressioni+j has
changed. On the other hand, commandsclearline, clearfunc, andclearvar with proper argu-
ments remove a breakpoint of line, function, and variable type in the list, respectively. Commandclear
removes all breakpoints in the debugger.

If the program execution has failed and is taking too long to complete, then the commandabort can
be used to stop the program.

The debug command pane can be cleared by clicking the command
View | Clear Debug Command Pane as shown in Figure 7.

5 Getting Started with Ch Command Shell

Ch can be used as a command shell in which commands are processed. Like other commonly used shells
such as the MS-DOS shell, Bash-shell, or C-shell, commands can be executed in a Ch shell. Unlike these
conventional shells, expressions, statements, functionsand programs in C and C++ can be readily executed
in a Ch shell. Therefore, the Ch command shell is an ideal solution for teaching and learning C/C++. An
instructor can use Ch interactively in classroom presentations with a laptop to quickly illustrate programming
features, especially when answering students’ questions.Learners can also quickly try out different features
of C/C++ without tedious compile/link/execute/debug cycles. To assist beginners in learning, Ch has been
especially developed with many helpful warning and error messages when an error occurs. instead of cryptic
and arcane messages likesegmentation faultandbus erroror crashing.

A Ch shell can be launched by running the commandch. In Windows, a Ch command shell can also
be conveniently launched by clicking the red-coloredCh icon, shown in Figure 20, on the desktop or on the
toolbar of the ChIDE.

Assume the user account is the administrator, after a Ch shell is launched in Windows, by default, the
screen prompt of the shell window becomes

C:/Documents and Settings/Administrator>

whereC:/Documents and Settings/Administrator is the user’shome directoryon the desk-
top as shown in Figure 21. The colors of the text and background as well as the window size and font

17

5 GETTING STARTED WITH CH COMMAND SHELL 5.1 Portable Commands for Handling Files.

Figure 21. A Ch command shell.

size of the shell window can be changed by right clicking the Ch icon at the upper left corner of the win-
dow, and select Properties menu to make changes. Note that for Windows Vista, you need to run ChIDE
with the administrative privilege to make such a change. Thedisplayed directoryC:/Documents and
Settings/Administrator is also called thecurrent working directory. If the user account is not the
administrator, the account nameAdministratorshall be changed to the appropriate user account name. The
prompt indicates that the system is in a Ch shell and is ready to accept the user’s terminal keyboard input.
The default prompt in a Ch shell can be reconfigured. If the input typed in is syntactically correct, it will
be executed successfully. Upon completion of the execution, the system prompt> will appear again. If an
error occurs during the execution of the program or expression, the Ch shell prints out the corresponding
error messages to assist the user in debugging the program.

All statements and expressions of C can be executed interactively in a Ch command shell. For example,
the outputHello, world can be obtained by calling the functionprintf () interactively as shown below
and as seen in Figure 21.

C:/Documents and Settings/Administrator> printf("Hello, world")
Hello, world

In comparison with Figure 21, the last promptC:/Documents and Settings/Administrator>
is omitted to save the space in the presentation of this book.Note that the semicolon at the end of a statement
in a C program is optional when the corresponding statement is executed in command mode. There is no
semicolon in calling the functionprintf in the above execution.

5.1 Portable Commands for Handling Files.

At the system prompt>, not only C programs and statements, but also any other commands (such aspwd
for printing the current working directory) can be executed. In this scenario, Ch is used as a command shell
in the same manner as MS-DOS shell in Windows.

Commands can be executed in a Ch command shell or Ch program. There are hundreds of commands
along with their respective online documentation in the system. No one knows all of them. Every computer
wizard has a small set of working tools that are used all the time, plus a vague idea of what else is out
there. In this section, we will describe how to use the most commonly used commands, listed in Table 1,
for handling files through examples. It should be emphasizedagain that these commands running in the Ch
shell are portable across different platforms such as Windows or Linux. Using these commands, a user can
effectively manipulate files on the system to run C programs.

Assume that Ch is installed inC:/Ch in Windows, the default installation directory. The current work-
ing directory isC:/Documents and Settings/Administrator, which is also the user’s home
directory. The application of portable commands for file handling can be illustrated by interactive execution
of commands in a Ch shell as shown below.

C:/Documents and Settings/Administrator> mkdir c99

18

5 GETTING STARTED WITH CH COMMAND SHELL 5.1 Portable Commands for Handling Files.

Table 1. Portable commands for handling files.

Command Usage Description
cd cd change to the home directory

cddir change to the directorydir
cp cpfile1 file2 copyfile1 to file2
ls ls list contents in the working directory
mkdir mkdir dir create a new directorydir
pwd pwd print (display) the name of the working directory
rm rm file removefile
chmod chmod +xfile change the mode offile to make it executable
chide chidefile.c launch ChIDE for editing and executingfile.c

C:/Documents and Settings/Administrator> cd c99
C:/Documents and Settings/Administrator/c99> pwd
C:/Documents and Settings/Administrator/c99
C:/Documents and Settings/Administrator/c99> cp C:/Ch/demos/bin/hello.c hello.c
C:/Documents and Settings/Administrator/c99> ls
hello.c
C:/Documents and Settings/Administrator/c99> chide hello.c

As shown inUsagein Table 1, the commandmkdir takes one argument as a directory to be created. We
first create a directory calledc99 using the command

mkdir c99

Then, we change to this new directoryC:/Documents and Settings/Administrator/c99 us-
ing command

cd c99

Next, we display the current working directory with the command

pwd

A C programhello.c shown in Figure 2 in the directoryC:/Ch/demos/bin is copied to the working
directory with the same file name using the command

cp C:/Ch/demos/bin/hello.c hello.c

Files in the current directory are listed using the command

ls

At this point, there is only one file hello.c in the directory
C:/Documents and Settings/Administrator/c99. It is recommended that you save all your
developed C programs in this directory so that you may easilyfind all programs later on. Finally, program
hello.c is launched by the command

chide hello.c

to be edited and executed in ChIDE as shown in Figure 2.

19

5 GETTING STARTED WITH CH COMMAND SHELL 5.2 Interactive Execution of Programs

5.2 Interactive Execution of Programs

It is very simple and easy to run C programs interactively without compilation in a Ch shell. For example,
assume thatC:/Documents and Settings/Administrator/c99 is the current working direc-
tory as presented in the previous section. The programhello.c in this directory can be executed in Ch to
get the output ofHello, world as shown below.

C:/Documents and Settings/Administrator/c99> hello.c
Hello, world
C:/Documents and Settings/Administrator/c99> _status
0

The exit code from executing a program in a Ch command shell iskept in the system variablestatus.
Because the programhello.c has been executed successfully, the exit code is 0 as shown inthe above
output when status is typed in the command line.

In Unix, in order to readily use the C programhello.c as a command, the file has to be executable.
The commandchmodcan change the mode of a file. The following command

chmod +x hello.c

will make the programhello.c executable so that it can run in a Ch command shell.

5.3 Setup Paths and Finding Commands in Ch

When a command is typed into a prompt of a command shell for execution, the command shell will search
for the command in prespecified directories. In a Ch shell, the system variablepath of string type contains
the directories to be searched for the command. Each directory is separated by a semicolon inside the string
path. When a Ch command shell is launched, the system variablepath contains some default search paths.

For example, in Windows, the default search paths are

C:/Ch/bin;C:/Ch/sbin;C:/Ch/toolkit/bin;C:/Ch/toolkit/sbin;C:/WINDOWS;C:/WINDOWS/SYSTEM32;

The user can add new directories to the search paths for the command shell by using the string func-
tion stradd() in the startup file, which will be discussed in detail a littlelater. This function adds argu-
ments of string type and returns it as a new string. For example, the directoryC:/Documents and
Settings/Administrator/c99 is not in the search paths for a command. If you try to run program
hello.c in this directory when the current working directory is
C:/Documents and Settings/Administrator, the Ch shell will not be able to find this pro-
gram, as shown below, and give two error messages.

C:/Documents and Settings/Administrator> hello.c
ERROR: variable ’hello.c’ not defined
ERROR: command ’hello.c’ not found

When Ch is launched or a Ch program is executed, by default, itwill execute the startup file.chrc in Unix
or chrc in Windows in the user’s home directory if the startup file exists. In the remaining presentation, it
is assumed that Ch is used in Windows with a startup filechrc in the user’s home directory. This startup
file typically sets up the search paths for commands, functions, header files, etc. In Windows, a startup file
chrc with default setup is created in the user’s home directory during installation of Ch. However, there

is no startup file in a user’s home directory in Unix by default. The system administrator may add such a
startup file in a user’s home directory. However, the user canexecute Ch with the option -d as follows

20

5 GETTING STARTED WITH CH COMMAND SHELL5.3 Setup Paths and Finding Commands in Ch

Figure 22. Open the local Ch initialization startup file for editing.

ch -d

to copy a sample startup file from the directoryCHHOME /config/ to the user’s home directory if there is
no startup file in the home directory yet. Note thatCHHOME is not the string“CHHOME” , instead it
uses the file system path under which Ch is installed. For example, by default, Ch is installed inC:/Ch in
Windows and/usr/local/ch in Unix. In Windows, the command in a Ch shell below

C:/Documents and Settings/Administrator> ch -d

will create a startup file chrc in the user’s home directory
C:/Documents and Settings/Administrator. This local Ch initialization startup filechrc
can be opened for editing the search paths by ChIDE editor as shown in Figure 22.

To include the directoryC:/Documents and Settings/Administrator/c99 in the search
paths for a command, the following statement

_path = stradd(_path, "C:/Documents and Settings/Administrator/c99;");

needs to be added to the startup filechrc in the user’s home directory so that the command hello.c in
this directory can be invoked regardless of what the currentworking directory is. After the directory
C:/Documents and Settings/Administrator/c99 has been added to the search path,path,
you need to restart a Ch command shell. Then, you will be able to execute the programhello.c in this
directory as shown below.

C:/Documents and Settings/Administrator> hello.c
Hello, world

21

5 GETTING STARTED WITH CH COMMAND SHELL5.4 Interactive Execution of Expressions and Statements

Similar to path for commands, the header files in Ch are searched in directories specified in the system
variable ipath. Each path is also delimited by a semicolon. For example, thestatement below

_ipath = stradd(_ipath, "C:/Documents and Setting/Administrator/c99;");

adds the directoryC:/Documents and Setting/Administrator/c99 to the search paths for
header files included by the preprocessing directiveinclude such as

#include <headerfile.h>

One can also add this directory to the search paths for function files by the statement

_fpath = stradd(_fpath, "C:/Documents and Setting/Administrator/c99;");

A function file contains the function definition.
In Unix, the search paths for commands by default do not contain the current working directory. To include the

current working directory in the search paths for a command,the following statement

_path = stradd(_path, ".;");

needs to be added in startup file.chrc in the user’s home directory. Function call
stradd(_path, ".;") adds the current directory represented by ’.’ to the system search pathspath.

5.4 Interactive Execution of Expressions and Statements

For simplicity, only the prompt> in a Ch command shell will be displayed in the remaining presentation. If a C
expression is typed in the command shell, it will be evaluated by Ch and the result then will be displayed on the
screen. For example, if the expression1+3*2 is typed in, the output will be 7 as shown:

> 1+3*2
7

Any valid C expression can be evaluated in a Ch shell. Therefore, Ch can be conveniently used as a calculator.
As another example, one can declare a variable at the prompt and then use the variable in the subsequent calcula-

tions as shown:

> int i
> sizeof(int)
4
> i = 30
30
> printf("%x", i)
1e
> printf("%b", i)
11110
> i = 0b11110
30
> i = 0x1E
30
> i = -2
-2
> printf("%b", i)
11111111111111111111111111111110
> printf("%32b", 2)
00000000000000000000000000000010

22

5 GETTING STARTED WITH CH COMMAND SHELL5.4 Interactive Execution of Expressions and Statements

In the above C statements, variablei is declared as int type with 4 bytes. Then, the integer value 30 fori is displayed
in decimal, hexadecimal, and binary numbers. The integral constants in different number systems can also be assigned
to variablei as seen above. Finally, the two’s complement representation of the negative number−2 is also displayed.
Characteristics for all other data types in C can also be presented interactively. Different format specifiers for the
families of input functionfscanf() and output functionfprintf () using file streams opened by functionfopen() can also
be tried out this way.

By default, a value of float or double type is displayed with two or four digits after the decimal point, respectively.
For example,

> float f = 10
> 2*f
20.00
> double d = 10
> d
10.00000

All C operators can be used interactively as shown:

> int i=0b100, j = 0b1001
> i << 1
8
> printf("%b", i|j)
1101

The concept of pointers and addresses of variables can be illustrated as shown:

> int i=10, *p
> &i
1eddf0
> p = &i
1eddf0
> *p
10
> *p = 20
20
> i
20

In this example, the variablep of pointer to int points to the variablei. In the next example, the relation of arrays and
pointers is illustrated as follows:

> int a[5] = {10,20,30,40,50}, *p;
> a
1eb438
> &a[0]
1eb438
> a[1]
20
> *(a+1)
20
> p = a+1
1eb43c
> *p
20
> p[0]
20

23

5 GETTING STARTED WITH CH COMMAND SHELL 5.5 Interactive Execution of Functions

Expressionsa[1], *(a+1), *p, andp[0] all refer to the same element. Multi-dimensional arrays canalso be
handled interactively. The boundary of an array is checked in Ch to detect potential bugs. For example,

> int a[5] = {10,20,30,40,50}
> a[-1]
WARNING: subscript value -1 less than lower limit 0
10
> a[5]
WARNING: subscript value 5 greater than upper limit 4
50
> char s[5]
> strcpy(s, "abc")
abc
> s
abc
> strcpy(s, "ABCDE")
ERROR: string length s1 is less than s2 in strcpy(s1,s2)
ABCD
> s
ABCD

The allowed indices for arraya of 5 elements are from 0 to 4. Arrays can only hold 5 characters including a null
character. Ch can catch bugs in existing C code related to thearray boundary overrun such as these.

The alignment of a C structure or C++ class can also be examined as shown:

> struct tag {int i; double d;} s
> s.i =20
20
> s
.i = 20
.d = 0.0000
> sizeof(s)
16

In this example, although the sizes of int and double are 4 and8, respectively, the size of structures with two fields of
int and double types is 16, instead of 12, for the proper alignment.

5.5 Interactive Execution of Functions

A program can be divided into many separate files. Each file consists of many related functions, which can be acces-
sible to any part of a program. All functions in the C standardlibraries can be executed interactively and can be used
inside user defined functions. For example, in the interactive execution:

> srand(time(NULL))
> rand()
4497
> rand()
11439
> double add(double a, double b) {double c; return a+b+sin(1.5);}
> double c
> c = add(10.0, 20)
30.9975

24

5 GETTING STARTED WITH CH COMMAND SHELL 5.5 Interactive Execution of Functions

/* File: addition.chf
A function file with file extension .chf */

int addition(int a, int b) {
int c;
c = a + b;
return c;

}

Program 1. Function fileaddition.chf.

The random number generator functionrand() is seeded with a time value insrand(time(NULL). Function
add() which calls type-generic mathematical functionsin() is defined at the prompt and then used.

A file that contains more than one function definition is usually suffixed with.ch to identify itself as part of a Ch
program. One can create a function file in a Ch programming environment. Afunction file in Ch is a file that contains
only one function definition. The name of a function file ends in .chf, such asaddition.chf. The names of the
function file and function definition inside the function filemust be the same. The functions defined using function
files are treated as if they were system built-in functions inCh.

Similar to path for commands, a function is searched based on the search paths in the system variablefpath for
function files. Each path is delimited by a semicolon. By default, the variable fpath contains the pathslib/libc,
lib/libch, lib/libopt, andlibch/numeric in the home directory of Ch. If the system variablefpath
is modified interactively in a Ch shell, it will be effective only for functions invoked in the current shell interactively.
For running scripts, the setup of function search paths in the current shell will not be used and inherited in subshells.
In this case, the system variablefpath can be modified in startup filechrc in Windows or.chrc in Unix at the user’s
home directory.

For example, if a file namedaddition.chf contains the program shown in Program 1, the function
addition()will be treated as a system built-in function, which can be called to compute the suma+ b of two input
arguments a and b. Assume that the function file addition.chf is located at
C:/Documents and Settings/Administrator/c99/addition.chf, the directory
C:/Documents and Settings/Administrator/c99 should be added to the function search path in the
startup file.chrc in Unix or fpath in Windows in the user’s home directory with the following statement.

_fpath=stradd(_fpath, "C:/Documents and Settings/Administrator/c99;");

Functionaddition() then can be used either interactively in command mode as shown below,

> int i = 9
> i = addition(3, i)
12

or inside programs. In Program 2, the functionaddition() is called without a function prototype in themain()
function so that the function prototype defined inside the function fileaddition.chf will be invoked. The output
of Program 2 isc = 5. If the search paths for function files have not been properlysetup, a warning message such as

WARNING: function ’addition()’ not defined

will be displayed, when the functionaddition() is called.
When a function is called interactively in a Ch shell, the function file will be loaded. If you modify a function

file after the function has been called, the subsequent callsin the command mode will still use the old version of
the function definition that had been loaded. To invoke the modified version of the new function file, you can either
remove the function definition in the system using the command remvar followed by a function name. or start a new
Ch shell by typingch at the prompt. For example, the command

> remvar addition

removes the definition for functionaddition(). The commandremvar can also be used to remove a declared
variable.

25

6 INTERACTIVE EXECUTION OF BINARY COMMANDS IN THE OUTPUT PANE5.6 Interactive Execution of C++ Programming Features

/* File: program.c
Program uses function addition() in function file addition.chf */

#include <stdio.h>

/* This function prototype is optional when function addition() in
file addition.chf is used in Ch */

int addition(int a, int b);

int main() {
int a = 3, b = 4, sum;

sum = addition(a, b);
printf("sum = %d\n ", sum);
return 0;

}

Program 2. Program using function fileaddition.chf.

5.6 Interactive Execution of C++ Programming Features

Not only C programs can be executed in Ch, but also classes andsome C++ features are supported in Ch as shown
below for interactive execution of C++ code.

> int i
> cin >> i
10
> cout << i
10
> class tagc {private: int m_i; public: void set(int); int get(int &);}
> void tagc::set(int i) {m_i = 2*i;}
> int tagc::get(int &i) {i++; return m_i;}
> tagc c
> c.set(20)
> c.get(i)
40
> i
11
> sizeof(tagc)
4

The input and output can be handled usingcin andcout in C++. The public methodtagc::set() sets the private
memberm i, whereas the public methodtagc::get() gets its value. The argument of methodtagc::get() is
passed by reference. The size of the classtagc is 4 bytes which does not include the memory for member functions.

6 Interactive Execution of Binary Commands in the Output Pane

Binary commands can also be executed interactively inside the output pane as shown in Figure 23. In Figure 23,
commandpwd in the output pane prints the current working directory. Commandls lists files and directories in the
current working directory. Options of a command can also be provided. For example, the commandls can invoked in
the form of

ls -F

to list directories with a forward slash at the end.

26

8 COMMONLY USED KEYBOARD COMMANDS IN CHIDE

Figure 23. Execute commands inside the output pane.

7 Compiling and Linking C/C++ Programs

ChIDE can also compile and link an edited C/C++ program in theediting pane using C and C++ compilers. By
default, the ChIDE is configured to use the latest Microsoft Visual Studio .NET installed in your Windows to compile
C and C++ programs. The environment variables and commands for the Visual Studio compiler can be modified in
the individual startup configuration filechrc in the user’s home directory, which can be opened for editingas shown
in Figure 22. In Linux, ChIDE uses compilers gcc and g++ to compile C and C++ programs, respectively. The default
compiler can be changed by modifying the C/Ch/C++ property file cpp.properties which can be opened under
the command Options.

The commandTools | Compile as shown in Figure 24 can be used to compile a program.
The output and error messages for compiling a C or C++ programare displayed in the output pane of the ChIDE.

In windows, compiling a program will create an object file with file extension .obj. The object file can be linked using
the commandTools | Link to create an executable program. The executable in Windows has file extension .exe.
If a Makefile is available in the current directory, the commandTools | Build will invoke the Makefile to build
an application. The commandTools | Go will execute the developed executable program.

8 Commonly Used Keyboard Commands in ChIDE

Keyboard commands in ChIDE mostly follow common Windows andGTK+ conventions. All move keys (arrows,
page up/down, home and end) allows to extend or reduce the stream selection when holding the Shift key, and the
rectangular selection when holding the Shift and Alt keys. Keyboard equivalents of menu commands are listed in the
menus. Figure 2 shaws the most commonly used commands and their corresponding keyboard commands.

27

8 COMMONLY USED KEYBOARD COMMANDS IN CHIDE

Figure 24. Compile a C/C++ program.

Table 2. Commonly used commands and their correponding keyboard commands in ChIDE

Command Keyboard Command
Help F1
Run C/Ch/C++ program in Ch F2
Find Next F3
Find Previous Shift+F3
Stop Executing C/Ch/C++ program F4
Start (Debug the program) F5
Step (Single step) F6
Next (Step over the next statement) F7
Close/Open Output Pane F8
Clear Output Pane F9
Clear Debug Command Pane F10
Close/Open Debug Console Window F11
Full screen F12

28

Index

.chrc, 20
chrc, 20
fpath, 25
ipath, 22
path, 21, 22

cd, 18
ChIDE, 1
chide, 18
chmod, 20
chrc, 20
commands, 26
compile, 27
Compile and Link Commands

Build, 27
Compile, 27
Go, 27
Link, 27

copyright, i
cp, 18

Debug Command
Watch, 15

Debug Commands
Abort, 7
Continue, 5
Down, 7
Next, 5, 7
Parse, 4
Run, 1
Start, 5
Step, 5, 7
Stop, 4
Up, 7

Debug Commands inside Debug Command Pane
abort, 17
assign, 13
call, 13
clear, 17
clearfunc, 17
clearline, 17
clearvar, 17
cont, 15
down, 15
expr, 13
help, 13
locals, 15
next, 15
print, 13
remove, 15
remove expr, 15

run, 15
stack, 15
start, 14
step, 15
stopat, 16
stopin, 16
stopvar, 16
up, 15
variables, 15
watch, 15

Debug Pane
Breakpoints, 5
Locals, 7
Stack, 8
Variables, 8

Embedded Ch, 1

function
function files, 25

function keys, 27

IDE, 1
Integrated Development Environment, 1

keyboard commands, 27

link, 27
ls, 18

mkdir, 18

Output, 4
Output Pane, 4

prompt, 17
pwd, 18

remvar, 25
rm, 18

stradd(), 21, 22

Unix Commands
cd, 18
cp, 18
ls, 18
mkdir, 18
pwd, 18
rm, 18
rmdir, 18

29

